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have the following linear properties:

Agt+ oty =4 (@) + 4 (@), 34 (@) = 4 Qa), A > 0
BE +pH=B@Y+ B (B, AB () =B (AB), A >0

From formulae (4.7) and (4.8) it follows that conditions (3.4) and (4.4) will be satisfied,
if there are numbers 0<A<1,a;2 0,0 >0 such that

(4.8)

(4 — &) <o = haty, @i <yt i=4, ...k
ABpS =01 =N B B<<Bpfi=1...um
These conditions will be satisfied, if for all i=1,...,k and j=1,..., m we have

R . T
et <hcapd, ABpd < Bpt 0Cr <t

From here we cgbtain the condition which when satisfied results in the satisfaction of
(4.3) and (4.4)

maxi (<air ey < ming Bpe*iBp) (4.9}
We shall now give some examples of multivalued functions that satisfy (4.8). If 4,.... 4y
are convex cempacts in R®, then A4 {x)=x4,+ ...+ azd; satisfies the condition (4.8).
Let 4;,i=1,..,n+1 be defined by the scalar product of inequalities (z,z)<<1 in R&».
Here z,,..., 2, 2,, are vectors from A" and the first of them are linearly independent, and the
coefficients f; in expansion gz, = iz, + ... + /a3n are negative.
Consider the set
A (@ oty = N4 =t B @) <o, i=1,...,n4 1} (4.10)

in which a; are non-negative. Then, as shown in /10/, the set (4,10) satisfies condition (4.8).
REFERENCES

1. KRASOVSKII N.N., On a problem of pursuit, PMM, Vol. 27, No. 2, 1965,

2, SUBBOTIN A.I. and CHENTSOV A.G., Optimization of the Guarantee in Control Problems. Moscow,
Nauka, 1981.

3. KRASOVSKII N.N, and SUBBOTIN A.I., Positional Differential Games. Moscow, Nauka, 1974.

4, PSHENICHNYI B.N., and SAGAIDAK M.I,, On differential games with fixed time. Kibernetika,
Ne. 2, 1970.

5. GUSYATNIKOV P.B., On the information available to players in a differential game. PMM, Vol.
36, No, 5, 1972,

6, POLOVINKIN E.S., Non-autonomous differential games. Differents, Uravneniya. Vol, 15, No, 6,
1979,

7. GUSYATNIKOV P.B. and POLOVINKIN E.S., A simple quasilinear problem. PMM, Vol. 44, No. 5,
1980,

8, ISAAKS R., Differential Games. Moscow, Mir, 1967.

9. DPONTRYAGIN L.S., On linear differential games, 2, Dokl, AN S$8SR Vol. 175, No. 4, 1967.

10, UKHOBOTOV V.I., Construction of a game's payoff in certain fixedtime differential games.
PMM, Vol. 45, No. 6, 1981.

Translated by J,J.D.

PMM U.S.S.R.,V0l.48,No.6,pp.654~659,1984 Q021-8928/84 $10.,00+0.00
Printed in Great Britain © 1986 Pergamon Press Ltd.

SINGULAR PERTURBATIONS IN A CLASS OF PROBLEMS OF OPTIMAL
CONTROL WITH INTEGRAL CONVEX CRITERION*

T.R. GICHEV

The problem of optimal control is investigated with a linear law of motion
and convex quality criterion. A small positive parameter appears in front
of the derivatives of some of the unknowns in the law of motion. The
behaviour of the optimal solution is studied when the small parameter
approaches zero with some assumptions that are different from thos
encountered in the literature.

1. Controlled objects whose law of motion is
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X =4y Ox+ A )y + B ®)u {.1)
Ay = Azl Ox+ Ay + B u; A0, Ag), Ay >0

are usually called singularly perturbed /1,2/. It is assumed that the length of time {t,, 7]
is fixed, the phase vectors x and y belong to spaces R"™ and R™, respectively, the controlling
parameter u belongs to space R", 4;;(f), and B, (¢), (i, j = 1, 2) are matrices of corresponding
dimensions that are continuous in the time interval [f,, Tl.

The behaviour of the solutions of various problems of the optimal control of an object
with the law of motion (1.1), as A->0 has been the subject of many publications (e.g. /3/,
and surveys /1,2/)}. The basic assumption in these investigation is the stipulation that the
real parts of the characteristic numbers of the matrix A4,, mustbe negative. The case when these
characteristic numbers have both positive and negative real parts was considered in /4/.
Below we allow the real part of the characteristic numbers of the matrix A4,, to vanish at one
point 6, in the interval (t, T). The results can easily be transferred to the case when
these real parts vanish at a finite number of points in the interval (f,, T). The case is con-
sidered, when the real parts are non-positive, but similar results alsc hold, when the character-
istic numbers of the matrix A, may have non-positive and non-negative real parts. As an example
of the problem of optimal control, the problem with a fixed right end is considered.

2, First, let us investigate some properties of the fundamental matrix Y (4, T, A, 1t
normalized for ¢t =17 of the equation

M =4, @By (2.1)

Let Rey[4,] be the real part of any characteristic number yl4,] of the matrix A4,,.

Let us specify the assumptions that are assumed to be satisfied when studying the properties
of the fundamental matrix Y (¢, 1, ).

Al, Points 8, 6, 8y, t, << 8, < 8, <8, < T and a continuous function o (t), t, <I <K T exist
which is linear in each segment [f,, 8,], [8,, 6,], [6,, 6,1, 184, T} and o () >0 when ¢80, such that
also for scme constant ¥, >0

fexpldp O3} I <nexp(—20()7), Viel, 6l 1>0
A2. If %, 1] is one of the segments {8y, 8,), [8,, 6,1, and on that segment ¢ (f} = at + b, then
f Ao (@) —4n @) | <vith—tl V4, ey, nh
Y0, 3laly)

Lemma 1, Let I%, T, be any of the segments I8, B,l, 16y, 8,], and the assumptions Al and
A2 are satisfied. Then a constant ¢ >0 exists such that for all tand t, T, <1<t <1,
the ineguality
1Y ¢ © N[ <epexp (— (o () + o (1))t — 1)/(24)) 2.2)
holds.

Proof. Let the function o{)=at+ ¢ hold on the segment 1, T,l. wWhen 8elivy, %), it
foellows from {2,1) that
MY (5, T, AWt = A 8) Y (1, T, A+ [y (1) — 45 BN Y (£, 7, A)
hence

i
A

1
1 —_
=)o (exp (40 52 ) X [t — Am @) Y (5,7, s @23

T

Y (1,7, A) = exp (Au (8)

First, we consider the case when the function ¢ () decreases on the segment [1,, 3] and
a < 0. We assume that 1 is a fixed point of the segment [1, 1] and that the notation

N N SR SN PATRSY
t—
Bt r y=exp (@) + 5 ()G ), MP~ max  w(t, )
LLIKICY

is introduced,
If, when 8=+t wemultiplyboth sidesof (2.3) by Z (¢, v, A), when 1, <r< 1< 1, we obtain
et TR S MP T — v/ (81 ayt
from which inequality (2.2) follows, when ¢, =y, (1 — Yov2/(3 | & )2,
When the function o(t) = at-- b increases on the segment [, 1,)] and a0, we introduce
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the notation
wp (8, A=Y (t, T, M| 24 (¢ T, )
Ze(t, %, M) = exp((cs (t) + 33 (1)) t—;r‘> ., Mt = r,<?2f<r, wy (8, T, A)
and consider the equation
MY (8, T, Afdt = — Y (£, T, A) Agy (T)
from which we obtain, as above, the inequality (2.2) for the same value of ¢,

Lemma 2. Let the assumption Al and A2 be satisfied., Then a constant ¢; >0 exists such
that for all fairly small A >0, if (v, 7] is any of segments [4, 8,l, [8;, 8,], [8,. 6,], {6, TI.
then

Vi e Vo' <Koy YV, t = 1, wl

where V%, V.' is the total change of Y (¢, T, A) with respect to t in the segment [, 1], and
with respect to t in the segment [t,, t], respectively.

Proof. From assumption Al in the segments (¢, 6,] and {8,, T] it follows that /5/
1Y (¢, T, A< eq exp (— a () (¢ — T)/N)

where ¢, is some constant, The proof of the lemma for these segments is found, e.g. in /6/.
Next we consider the segment {6, 6,]. The uniform boundedness of Vg' with respect to
t e [0,, 8,], and V,,“ with respect to te (0, 8, is obtained from the boundedness of the
total change of the two terms on the right side of (2.3) when 0=28,. This follows for -the
first terms from the results in /6/, and for the second, from Lemma 1.
In the segment [68,,8,] (2.3) is considered for 6 =8,. This is followed by reasoning
similar to that in the first case., This completes the proof of the lemma.

3. Let us study some of the properties of the solution (X, y») of the problem

X=Aut)x+ Ay + (G A), x(f)=vo(A) 3.1
AY =Au (x4 Aea ()Y + £ (B A),  y(to) = wo(A)

in the segment [¢,T] when A& (0, A,), assuming that matrix da™ (f) exists everywhere in
the segment [z, Tl We denote by X, the solution of the problem

X = Ay (1) x + £ (2, 0) — A1 (1) 452 () € (£, O; (3.2)
A= An imand AuA;;Au
X (ty) == Vg (0) — Aqe (f5) Aa™ (f0) Wo
Let X (t, T) be the fundamental matrix of the equation x = Ay ()x normalized for ¢ =71,
and ¥, (8) = —Agy ™ (tNAgy (€)X, (&) + 8 (¢, O)).

Theorem 1. Let the assumptions Al and A2 be satisfied. Further, let us assume that when
A =10, A,) the functions [(-, A) & L™ [&, T g (-, M) = L™ (4, T, p>>1; the set of functions
f(-,A),Ae=(0,A,) are bounded in L,m™{¢,, T], the set of points Vv, (&) and  Awy (M), A= (0, Ayp)
are bounded in R™ and R™, respectively. The following statements then hold.

1°, 1If the set of functions g(-,A), A< (0, Ay) is bounded in L,™[¢, Tl, a constant
¢ >0 exists such that for all fairly small A >0

max | x ()] <e
<I<T

If the set of functions g (-, M), A& (0, Ay) is uniformly bounded, then for any point Ty =
(¢, T) a constant ¢, >0 exists that for all fairly small A >0
max [y (O <o 3.3
SIKT

If the set of points w, (M), A= (0, A,) is bounded. inequality (3.3) also holds for 1, = {,.

20, I1f {,})® is a sequence of numbers i, >0 for which limA, =0 as k- oo, the
sequence {f (-, M)h™ is weakly convergent in L, [f, Tl to 1(-,0), and the sequence {£(
M)h® weakly converges in L, f{t, Tlto g(-, 0), lim vy (}) = v, (0) and lim &, w, () = w, as
k — o0, then for any point 1, & (4, T)

lim max I %, () —% () | = O

koo TS

and, 1f | w, | = 0 the last equation also holds for T, = {,.

30, wWith the assumptions from 2°, when the functions g (.. M)k =1, 2, ...) are continuous
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everywhere in the segment lt.,,Tl the sequence {y(t)h™ converges to ¥, (t).

The proof of all three statements of the theorem in the segment [#,, 8,1 follows from
Theorems 2.1 and 2.2 in /4/.

Let us now consider the segment [8;, 8,]. We introduce the functions

and the sequences {g (-, A)h™ converge uniformly in the segment [, T} to g(-,0), then almost

i
w1, A= X (6, 8,)(m.(80) — %o (80) + { Xt w)E (z, 1) — £z, O)) dv+

8
i

S XD 4u(n Y (1,0, M nB)dr—
&

t hi
[—%—X X (t, 1) Az (v) § Y (%, 8, ) A2 (5) Yo (5) dedt -+

t t

§X(t ) Au(0) Yo (r)dr | + ;X(fﬂ)fin(ﬂ x

S Y (%, 5, AN (5, M) — g (s, 0)) dsd
8,

since lim A}y ©) ] =0 as A-»0, the uniform boundedness of the set of functions ¥ {*, 4}
for all fairly small A >0 on assumptions 1© is proved directly. For the last three terms
we use the properties of the Stieltjes integral and Lemma 2.

According to (3.1) and (3.2}

I (8)=xo (1) | < max Il it M+

‘D

1
H—E X (6, 7) An @} Y (5,5, %) dn ()0, (5) — xo () dede |

'M,.

Then, changing the order of integration and applying the Gronwall inequality, we obtain
z 1
10 —x®1 < max w0 fex( mex [1X¢04n@ 40y mab|x Slan@las) @)

Consequently, by virtue of the assumptions in 1° the set of functions x; is uniformly
bounded for all fairly small A>>0. On the same assumptions we have

LimA |y (B0 | <
A0

8,
+Lim |AY (B0, 61,41 (00| + ])5 Y (B, % 1) dn () % (1] +

ilIY(en,'c, ll"dt)"“(gug(r M) fpde)” =0, -},~+-§-=1

8

when the set of functions g({-:, &), A= (0, A,) 1is uniformly bounded, from the equation
NOH=Y (60,13 0) = §m ©N) An (1) 0(7) A + §Y<r ) glx M de (3.5)

there follows the uniform boundedness of the set of functions 1y, for all fairly small A2> Q.
In assumptions 2° the sequence {v, {-, M)h™ converges uniformly in the segment [8;, 8,} to

zero, and then from (3_.4) there follows the uniform converagence of the gseguence fx, L.® +n x
zero, and then from (2 4} there followe the uniform conv rge e sequence (X i to

The convergence of the sequence {y, h™ for all t& (6, 8] on assumptions 3° is obtained
from (3.5) using Lemmas 1, 2 and the properties of the Stieltjes integral,

Let us concsider in the sagment [8.. 8.} the functions w. (£. LAY pbhtained from v, (2. A) by
congider che segment ¥, Pu: THe IURCIICONE Wy (I, A} Qbtainec Irom v {4, A) DY

exchanging 0, for 8 Similarly, we shall prove that under appropriate conditions on
assumption 1° for all fairly small A>0 the set of functions x, is uniformly bounded

lmAlew B =0 as 250 and the sat of functiens

mrae d nr dmman e

mALY V)= Voang Lae s5el O functions » is utu.:.v;u.u.y bounded. The uniform
convergence in the segment [8,, 8,] of the sequence {\; }® to 2z, and the convergence of the
sequence {‘?s (Oh™ to y,(f) for all t E ©. 6} is s.unllarly proved The proof of the

theprem is completed by apniving in
et 18 completed by appiying ir

in 7y
segment (U, 71 Theorems 2,1 and 2,2 from /4/.

{?
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4, Let us investigate some of the properties of the controlled object whose law of
motion is (l1.l). The proof of all statements cited below is similar to that of the respective
statements in /4/, and is carried out using the scheme employed there but taking Theorem 1
into account,

Let f°(f, x) be a scalar function continuous in the set [f,, Tl X R", convex in x for
any fixed value t&|{ty, T), f°(¢, x) >0, and have continuous partial derivatives af° (¢, x)/dx.
Let bk (¢, u) be a scalar function continuous in the set [#, T] X R" strictly convex in w for
fixed t& 4y, T, and for some constants g, >0, p>>1 the inequality A (t,u)>>ay|ulP is
satisfied. The admissable control for A& [0, A,) comprises all r-measurable functions ue&
L {t,, T1  for which the functional

T
TuMy = (P x@®) +ht, uinrde (4.1)

'C

where (x,y) is the solution of system (1.l) corresponding to the control u, takes a finite
value.

The following are the assumptions for which investigations are carried out below.

Bl. The equation

rank (B, (T) Ags (T) By (T) . . AT (1) By (T)] = m
holds
B2, An object whose‘'law of motion is

X' =Ady (O)x + (By (1) — Ay (1) Asa™ (1) By () u (4.2)

is entirely controllable in the segment [f,, Tl
First, we formulate a lemma which will be repeatedly used in proving the following theorems.

Lemma 3, .Let the assumptions A1, A2 and B! be satisfied. Further, let {M4h™ be a
sequence of numbers A > 0,lim Ay = 0 when k— o0; w,=R™ wpe=R™ let u*(t), L, <t<T
be a continuous control with the corresponding solution x* of (4.2). Then, a sequence
{w,*1* of r-measurable functions w,* exists with the respective solution (x*, yi*) of system
(1,1) when A =i, so that

1°. the sequences {W*%h=, {x*h>, {(¥x*h™ are uniformly bound in the segment [t, 7], and
at each point t e (&), T), t % 0, converge to u*, x*, y* = — d,,* (4,,x* + B,u*), respectively

20, the equations

X * (to) == x* (o), ,}_1.1: x* (T)=x*(T), y*(b) =Wo ¥1*(T)=wr

iim I (up®, Ay) =1 (u*,0)
koo

hold.
If also assumptions B2 holds, the sequence {u;*};® may be selected so that the equation
x* (T) = x* (T) is satisfied.

Theorem 2., Let the assumptions A1, A2, B1 and B2 be satisfied. Then, for all fairly
small A >0 the object whose law of motion is (1.l) is entirely controllable in the segment
(¢, T1.

’ Suppose P;, A =(0, A,) denotes the problem of optimal control of an object whose law of
motion is (l.1), which consists of finding an admissable control u which transfers the object
from the initial state X {f) = Vo, ¥ (8) = W, to the final state x(T) = vr,y(T) = wr for the
minimal value of the criterion (4.1). We denote the optimal control corresponding to the
solution of system (1.1) and the optimal value of the criterion (4.1) for problem P; by u,,
(., Y1), Ins respectively. We denote by P, the problem of optimal control which consists of
finding an admissible control u with corresponding solution X of (4.2) such that X (25} = v,
x(T) = vr and the criterion (4.1) takes the minimum value. Let u, X, I, be the solution
of this problem and y, = —d4s™" (ds1Xe + Bjuy).

Theorm 3. Let assumptions Afl, A2, Bi, and B2 be satisfied. Then for any number e >0
and any four points T,%, T,% T,%, T for which

to<To°< 91<Tlo<90<1’go<eg<1’3°< r
a number 6 >>0 exists such that, when A = (0,8), then

|5 —Ty| + max s () —x () — max fw () —u )]+
t,<t<T t ST

max [y =y <&
t={1°, BN, ©°)
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Note that using the statements of Sects., 2 and 3 enables us to extend the results of
Theorems 2 and 3 to the case when the characteristic numbers of the matrix 4, in (1.1)
have real parts that change signs at one point of the interval (4. T).
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ON THE DEFINITION OF VARIATIONS IN THE MECHANICS OF CONTINUOUS MEDIA*

A.G. TSYPKIN

The basic forms of variations used in the mechanics of continucus media
are presented, and relations between various types of variations of vectors
and tensors are established.

The construction of new more complex models of continuous media can be based on the use
of the variational equation /1/. In constructing models of continuous dislocations of plastic
and solid media interacting with an electromagnetic field (in Newtonian mechanics as well as
in the theory of relativity)/2-6/ and, also, a number of other models, it is necessary to
deal with variations of various types of different quantities, such as scalars, vectors, and
tensors which can be considered as functions of Buler or Lagrangian coordinates. Hence it is
necessary to have established connections between various types of variations which are of
the same nature as the variable functions,

Below we consider some of the simplest types of variations used to construct models of
solid media in the special theory of relativity, We shall denote by 2(i=1,2 34 the Euler
coordinates and by §%(e=4,2, 3, 4 the Lagrangian coordinates of four-dimensional Minkowski
space, assuming that the global, coordinates z* and & have a temporal nature zt=cof, ¥ =1, (¢
is the velocity of light in a vacuum),

In the coordinate system 2! with basis vectors » defined as unit vectors tangent to
the lines zi=rconst, and the particle world lines determined by the equations zi= 2 (8%) (the
law of motion of a point with Lagrangian coordinates relative to system ai). Here and
henceforth Greek indices run through the numbers 1,2,3, and the lower case Latin letters
through 1,2,3,4.

At each point of the Minkowski four~dimensional space-time we may introduce covariant

and contravariant basis vectors (s, and o, s, and »"* for coordinates s and for systems
E*, respectively, connected by the eguations
~ 8t ; g ~
PN | L
% THE T % %= =§.%a,

When constructing models of media and fields besides the law of motion one has to consider
various scalar, vector, and tensor fields that represent mechanical, physical, or chemical
characteristic of the phenomena and processes investigated which are functions of the coordinates
#i  or g* {for details of these characteristics see, €.g., /6/). In problems related to
specifying. or determining the laws of motion of the solid medium, and the laws of variation
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